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Evolution of complex oscillations in a quasiperiodically forced chain

O. Sosnovtseva, T. E. Vadivasova, and V. S. Anishchenko
Physics Department, Saratov State University, Astrakhanskaya Street 83, Saratov 410026, Russia

~Received 17 December 1996; revised manuscript received 25 July 1997!

We investigate complex dynamics along the chain of quasiperiodically forced circle maps. We present
numerical evidence for the development of a strange nonchaotic behavior within a wide range of spatial
parameters. The bifurcations and properties of nontrivial attracting sets are studied.@S1063-651X~97!07912-9#

PACS number~s!: 05.45.1b, 02.60.Cb
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I. INTRODUCTION

Much in the spirit of the study of the routes to chaos
finite-dimensional dynamical systems, investigation of
transition to turbulence in simple but pithy models of sp
tially extended systems is not only an interesting topic in a
of itself, but may also providea posteriori insights into the
problem of the ‘‘nature of turbulence.’’ Toward this goa
modeling of a continuous medium by a chain of coup
oscillators, and characterization of complex phenomena
space-time, are important in the study of turbulence in
general sense not only in the field of hydrodynamics but a
in chemical reactions, nonlinear optics, and biology.

A variety of phenomena have been discovered in latti
of coupled discrete- or continuous-time systems demons
ing a period-doubling transition to chaos; among them
spatiotemporal chaos, spatial period-doubling bifurcatio
saturation of attractor dimension down the flow, critical d
namics, and development of multistable regimes@1–6#.

In high-dimensional dynamical systems, chaos evol
through different scenarios. One of the typical routes
chaos, well known from theoretical results as well as fro
experiments, is the transition from quasiperiodic oscillatio
to a strange chaotic attractor@7–14#.

Recently, considerable interest has been focused on
study of quasiperiodically forced nonlinear dynamical s
tems. A strange nonchaotic attractor~SNA! is one of the
nontrivial attracting sets that can be observed in such
tems. This attractor was first described by Grebogiet al.
@15#, and since then investigated in a number of numer
and experimental studies. Its properties are in between o
and chaos: it has no exponential divergence of trajector
but it is not a finite set of points and is not piecewise diffe
entiable.

In this paper, we focus on the question: How do attract
with a complex structure develop along a chain of nonlin
dynamical systems when quasiperiodic forcing is applie
Hence, our investigations are made under the following st
egy: proposition of a simple and relevant model~Sec. II!;
search and exploration of different routes from quasiperi
icity to chaos, qualitative description of the change of os
latory properties along the chain, and verification of the
istence of SNA in the spatially extended model~Sec. III!;
summary and a definition of future problems~Sec. IV!.

II. CHAIN OF CIRCLE MAPS

In studying the quasiperiodic transition to chaos, it is co
venient to investigate the circle map, which can be thou
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of as representing the Poincare` map of a continuous flow,
and is also highly relevant for understanding many phys
phenomena. We focus on the properties of the chain of ci
maps that take the forms

x0~n11!5x0~n!1u0 , mod 1, ~1!

x1~n11!5x1~n!1V12~K1/2p!sin@2px1~n!#

1A cos@2px0~n!#, mod 1, ~2!

xj~n11!5xj~n!1V j2~K j /2p!sin@2pxj~n!#

1G cos@2pxj 21~n!#, mod 1, ~3!

where j 52,3, . . . ,m, and the parametersV and K are the
phase shift and nonlinearity in the circle map, respective

Equation~1! describes an external forcing which can
considered as a signal from a similar oscillator but w
K50 and the fixed winding numberu0 irrational. In circle
map~2!, a quasiperiodic external forcing with amplitudeA is
included. The dynamics ofx0 is added to the dynamics ofx1.
The detailed numerical analysis of the system of equati
~1! and ~2! for AÞ0 was performed in Refs.@16,17#. The
existence of two- and three-frequency tori, and strange n
chaotic and chaotic attractors has been found. System~3!
may be considered as a chain of coupled circle maps wh
the parameterG represents the coupling coefficient and ce
are supposed to be identical, i.e.,V j5V, K j5K. Further-
more, systems~1!, ~2!, and ~3! are the quasiperiodically
forced chain of circle maps which is the subject of our int
est.

III. COMPLEX DYNAMICS ALONG THE CHAIN

Adding a quasiperiodic forcing leads to a few notab
effects. In this section we present our numerical work s
porting this and other associated results, and illustrate
distinct characteristic properties of different attractors t
can arise in quasiperiodically forced chains. The most imp
tant effect is that quasiperiodic forcing interrupts the s
quence of spatial period-doubling bifurcations: instead
this, an invariant curve becomes fractal. The latter is
dressed in detail below.
282 © 1998 The American Physical Society
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A. Strange nonchaotic behavior

Up to now several scenarios of transition to chaos in
namical systems observed under the change of some co
parameters have been revealed and studied in detail. In
sipative systems there are the Feigenbaum period-doub
sequence, and transitions via intermittency and via quasip
odicity. ForK.1, the circle map is no longer invertible, an
has chaotic trajectories. In this region forA50 the develop-
ment to chaos along the chain via a finite number of spa
period-doubling bifurcations takes place~Fig. 1! in contrast
to an infinite number of period doublings in each cell@3,5#.
In Fig. 1~a! it is clearly seen that chaotic oscillations devel
in the fifth cell. Its Lyapunov exponent is equal
l510.0434. The next cells add no positive exponents; t
seem to retranslate chaotic dynamics from the fifth cell.

We now discuss, what qualitative changes appear wh
quasiperiodic forcing withu050.5(A521) is applied . Qua-
siperiodic forcing leads to the interruption of a sequence
spatial period doublings as soon as the forcing amplitud
increased, and to the loss of smoothness of an invariant c
corresponding to a two-frequency quasiperiodic regime
terms of continuous-time systems. The sequence of p
shown in Fig. 1~b!, is representative of the transition from
quasiperiodic dynamics to strange nonchaotic dynamics
dicated in the fifth cell (l520.0516).

To explain the main results, we refer to the bifurcati
diagram shown in Fig. 2. According to the qualitatively d
ferent dynamical behavior exhibited by systems~1!, ~2!, and
~3!, Fig. 2 can be divided into three regions. The white-co
region corresponds to two-frequency quasiperiodic osc
tions with two or four bands, respectively. The hatched a
in the diagram indicates the set of parameter values
which the system still exhibits negative Lyapunov exp
nents, but the attractor becomes strange. To indicate
strangeness of the attractor in each cell we use the cri
described in Ref.@18#. Let us examine the appearance of
n-band strange nonchaotic attracting set when the spatia
ordinate j is changed. For some value ofA the transition
from a four-band torus to a two-band SNA occurs~the solid
curve in Fig. 2!, being similar to merging crisis ofn-band
torus@17,19# or tori coexisting in the phase space@20#. Since
the spatial coordinate is discrete, it is impossible to indic
the bifurcation of the band merging. Therefore, we can o
refer to the analogy between these phenomena in time-sp
The dashed curve in Fig. 2 illustrates the transition when
loss of smoothness of a two-band torus leads to a two-b
fractal set. Notice that quasiperiodic forcing can not on
suppress chaos, as mentioned above, but also induce th
velopment of chaotic oscillations along the chain for larg
values of the forcing amplitude.

B. Spatial dynamics

The dynamics in each cell differs from the one in t
other cells, and becomes more complicated along the ch
From some value ofj the dynamics is qualitatively the sam
in each cell; let us call this regime ‘‘spatiostable.’’ Consid
spatiostable regimes when the parameters are changed
investigate a chain of 900 cells for different values ofK and
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G and fixedA with the same initial conditions. The bifurca
tion diagram of spatiostable regimes is given in Fig. 3. Ins
region 1 there exists a cycle with period 2 in all cells beg
ning with some j . In this case a quasiperiodic excitatio
damps along the chain, and has no effect on the oscillat
of cells whose dynamics in the autonomous case corresp

FIG. 1. The view of the attractors of systems~1!, ~2!, and ~3!
@K51.55,V50.5, G50.13,u050.5(A521)# in the quasiperiodi-
cally unforced caseA50 @doubled invariant curve (j 54) and cha-
otic attractor (j 55)# ~a!, and when quasiperiodic forcing is applie
A50.001@wrinkling of doubled invariant curve (j 54) and strange
nonchaotic attractor (j 55)# ~b!.
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284 57SOSNOVTSEVA, VADIVASOVA, AND ANISHCHENKO
to a cycle with period 2. The cells oscillate ‘‘in phase,’’ an
the instant states along the chain at a fixed time look lik
straight line@Fig. 4~a!#. When the parameter nonlinearityK
or the coupling parameterG is increased, the spatiostab
regime 1 is destroyed. An external signal propagates al
the chain, influences the dynamics, and gives rise to qua
eriodic oscillations in each cell. Corresponding instant sta
are shown in Fig. 4~b!. In region 3, one of two differen
cycles with period 2 is realized in each cell along the ch
@Fig. 4~c!#. It seems that the multistability phenomenon tak
place, and the bifurcation diagram in Fig. 3 has a multish
structure. The regime of SNA appears via the destruction
an invariant curve@Fig. 4~d!# and becomes spatiostable
regions 4 and 5~Fig. 3!.

When the parameter of nonlinearity is increased, cha
oscillations appear~region 6 in Fig. 3!. For different values
of coupling chaotic oscillations have different properties
space. Below the dashed curve~Fig. 3!, every other cell adds
a positive Lyapunov exponent into the spectrum
Lyapunov exponents of the system. Hence the hyperch
evolves along the chain. Figure 5 presents the results of
culation of Kolmogorov entropy (H j5( i 5 i

j l i
1) for different

values of couplingG. It can be seen that, forG,0.385, the
Kolmogorov entropy grows in a linearly way along th
chain. But whileG is increased, every other cell does not a
positive Lyapunov exponents, and a saturation of the entr
takes place. Therefore, for chaotic oscillations develo
from quasiperiodic ones, we obtained the same results a
chaos of the Ro¨ssler type@3#.

FIG. 2. Bifurcation diagram for a chain of coupled circle ma
@K51.55,V50.5,G50.1, andu050.5 (A521)#. 2T2 is the two-
band invariant curve, 4T2 is the four-band invariant curve, an
2SNA is the two-band strange nonchaotic attractor.
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C. Attractors on a three-dimensional torus

Starting from a knowledge of the destruction of a tw
dimensional torus@11,12#, let us proceed to study the influ
ence of the third frequency. For small nonlinearity (K,1),
the circle map is invertible, and has no chaotic trajectories
this case, the development of chaotic oscillations along
chain is impossible. However, the destruction of quasip
odic oscillations and the transition to a strange noncha
attractor seem to be typical phenomena, being obser

FIG. 3. Bifurcational diagram of spatiostable regimes in a q
siperiodic forced chain on a parameter plane (K,G) (A50.15, and
the initial conditions are homogeneous!.

FIG. 4. Stable states along the chain at fixed time for differ
regions of the diagram in Fig. 3.
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57 285EVOLUTION OF COMPLEX OSCILLATIONS IN A . . .
within a wide range of cell parameters and coupling coe
cient. Adding external forcing with frequencyu05A221
~silver mean!, and keeping the winding number in each c
at u50.5(A521) ~golden mean!, we provide the regime o
three-frequency oscillations in terms of a continuous-ti
dynamical system~in terms of a map, it has two zer
Lyapunov exponents, one of which is connected to the q
siperiodic forcing, and another one which is equal
0.12731024).

For some values of the forcing amplitude, synchronizat
on T3 can take place, and the destruction of two-frequen
synchronous oscillations along the chain discussed above
curs ~Fig. 6!. However, let us consider the evolution of th
three-frequency quasiperiodic oscillations. A set of stand
methods like phase portraits, power spectra, and Lyapu
exponents are used to distinguish different kinds of dynam
in systems exhibiting two-frequency quasiperiodic behav
However, these quantities cannot sufficiently characte
three-frequency oscillations@Fig. 7~a!#, in particular when it
is necessary to decide whether a three-frequency quasi
odic motion is broken down or not. For this reason the
mension of the limit set has been reduced using a Poin´
section. We have to formulate a condition which specifi
the secant surface:ux20.5u<1025. By means of this section
we are able to obtain phase portraits of the system in thex0-
xj plane@Fig. 7~b!#, which can be compared with the pha
portraits in Fig. 6. This yields an invariant curve in the ca
of an ergodic motion onT3, and reveals its loss of smooth
ness and further destruction in the sixth cell. Thus the
pearance of a strange nonchaotic attractor onT3 is related to
the destruction of this invariant curve in the Poincare´ section.
Thus, along the chain, the alternation of synchronous os
lations, three-frequency motion, and strange nonchaotic
havior can be distinguished.

IV. CONCLUSIONS

It has been shown that the quasiperiodically forced ch
of circle maps exhibits well-known phenomena investiga
before, namely, spatial period doublings, multistability, a
saturation of attractor dimension, as well as new effects

FIG. 5. Kolmogorov entropy vs the number of cells, for diffe
ent G values@K52.0, V50.5, A50.15, andu050.5 (A521)#.
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lated to the introduction of quasiperiodic forcing. One impo
tant feature is that a strange nonchaotic behavior is a typ
spatial regime. Along the chain, it can be observed withi
wide range of both spatial and coupling parameters, while
a single quasiperiodically driven map it is detected in
rather narrow region of the parameter space even if it ex
over the set of positive measures in it.

Moreover, it is possible to introduce detuning between
winding numbers to obtain multifrequency quasiperiodic
gimes and investigate the existence of attractors with a c
plex structure on their surface and their breakdown.

However, we realize that such an approach applied
maps on a torus has a limitation in the fact that the sys
studied there is a discrete one and is highly abstract, and
trajectories are on the torus by construction. Hence, a nat
typical dissipative dynamical system which allows highe
dimensional phenomena to appear could be a challenge
further studies of the above-mentioned problems.

FIG. 6. Phase space plots corresponding to trajectories o
three-frequency quasiperiodic attractor when synchronization ta
place (K50.8, V50.610 074,G50.2, A50.06, andu05A221).
For j 54 and 5, an invariant curve is presented, while forj 56 a
strange nonchaotic attractor is observed.
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FIG. 7. Evolution of the phase portraits of a three-frequency invariant torus in systems~1!, ~2!, and~3! (K50.8,V50.610 074,G50.2,
A50.058, andu05A221) ~a!, and Poincare´ maps~b! for attractors~a!.
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