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Evolution of complex oscillations in a quasiperiodically forced chain
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We investigate complex dynamics along the chain of quasiperiodically forced circle maps. We present
numerical evidence for the development of a strange nonchaotic behavior within a wide range of spatial
parameters. The bifurcations and properties of nontrivial attracting sets are s{&di663-651X%97)07912-9

PACS numbgs): 05.45:+hb, 02.60.Cb

[. INTRODUCTION of as representing the Poincameap of a continuous flow,
and is also highly relevant for understanding many physical

Much in the spirit of the study of the routes to chaos inphenomena. We focus on the properties of the chain of circle
finite-dimensional dynamical systems, investigation of themaps that take the forms
transition to turbulence in simple but pithy models of spa-
tially extended systems is not only an interesting topic in and
of itself, but may also provida posterioriinsights into the Xo(N+1)=Xo(n)+ 6y, mod 1, 1)
problem of the “nature of turbulence.” Toward this goal,
modeling of a continuous medium by a chain of coupled
oscillators, and characterization of complex phenomena in X1(N+1)=X1(n) + Q1 — (K/27)sin 2mx,(N) ]
space-time, are important in the study of turbulence in a
general sense not only in the field of hydrodynamics but also +A co§2mXo(n)], mod 1, @
in chemical reactions, nonlinear optics, and biology.

A variety of phenomena have been discovered in lattices .
of coupled discrete- or continuous-time systems demonstrat- xj(n+1)=x;(n)+ Q= (Kj/2m)sin 2mx;(n)]
ing a period-doubling transition to chaos; among them are +G co§2mx;_4(n)], mod1 3)
spatiotemporal chaos, spatial period-doubling bifurcations, -1 ' '
saturation of attractor dimension down the flow, critical dy-
namics, and development of multistable regiries6]. wherej=2,3, ... m, and the parametel® andK are the

In high-dimensional dynamical systems, chaos evolvegnase ‘shift and nonlinearity in the circle map, respectively.
through different scenarios. One of the typical routes to Equation(1) describes an external forcing which can be
chaos, well known from theoretical results as well as fromconsidered as a signal from a similar oscillator but with

experiments, is the transition from quasiperiodic oscillationsK_0 and the fixed winding numbe, irrational. In circle
= . )

to a strange chaotic attract¥—14) HBap(Z), a quasiperiodic external forcing with amplitules

Recently, considerable interest has been focused on t ) ; .
study of quasiperiodically forced nonlinear dynamical sys-1cluded. The dynamics o, is added to the dynamics &f.

tems. A strange nonchaotic attrac8NA) is one of the The detailed numerical analysis of the system of equations
nontrivial attracting sets that can be observed in such sydd) and(2) for A#0 was performed in Ref416,17. The
tems. This attractor was first described by Grebegial. ~ €Xistence of two- and three-frequency tori, and strange non-
[15], and since then investigated in a number of numericafhaotic and chaotic attractors has been found. Sys@®m
and experimental studies. Its properties are in between ordé@hay be considered as a chain of coupled circle maps where
and chaos: it has no exponential divergence of trajectorie$he paramete® represents the coupling coefficient and cells
but it is not a finite set of points and is not piecewise differ-are supposed to be identical, i.€};=(), K;=K. Further-
entiable. more, systemg1), (2), and (3) are the quasiperiodically

In this paper, we focus on the question: How do attractordorced chain of circle maps which is the subject of our inter-
with a complex structure develop along a chain of nonlineaest.
dynamical systems when quasiperiodic forcing is applied?
Hence, our investigations are made under the following strat-
egy: proposition of a simple and relevant modskc. 1); ll. COMPLEX DYNAMICS ALONG THE CHAIN
search and exploration of different routes from quasiperiod-
icity to chaos, qualitative description of the change of oscil-
latory properties along the chain, and verification of the ex
istence of SNA in the spatially extended mod8kec. ll));
summary and a definition of future problert&ec. IV).

Adding a quasiperiodic forcing leads to a few notable
effects. In this section we present our numerical work sup-
porting this and other associated results, and illustrate the
distinct characteristic properties of different attractors that
can arise in quasiperiodically forced chains. The most impor-
Il. CHAIN OF CIRCLE MAPS tant effect is that qugsiperiodk_: forc_ing inf[errup_ts the se-
quence of spatial period-doubling bifurcations: instead of
In studying the quasiperiodic transition to chaos, it is con-this, an invariant curve becomes fractal. The latter is ad-
venient to investigate the circle map, which can be thoughtiressed in detail below.
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A. Strange nonchaotic behavior

(a)

Up to now several scenarios of transition to chaos in dy- X4
namical systems observed under the change of some control
parameters have been revealed and studied in detail. In dis-
sipative systems there are the Feigenbaum period-doubling
sequence, and transitions via intermittency and via quasiperi-
odicity. ForK>1, the circle map is no longer invertible, and
has chaotic trajectories. In this region far=0 the develop-
ment to chaos along the chain via a finite number of spatial
period-doubling bifurcations takes plad€ig. 1) in contrast
to an infinite number of period doublings in each d&l)5].

In Fig. 1(a) it is clearly seen that chaotic oscillations develop
in the fifth cell. Its Lyapunov exponent is equal to
A= +0.0434. The next cells add no positive exponents; they
seem to retranslate chaotic dynamics from the fifth cell.

We now discuss, what qualitative changes appear when a
quasiperiodic forcing withg,=0.5(;/5— 1) is applied . Qua-
siperiodic forcing leads to the interruption of a sequence of
spatial period doublings as soon as the forcing amplitude is
increased, and to the loss of smoothness of an invariant curve
corresponding to a two-frequency quasiperiodic regime in
terms of continuous-time systems. The sequence of plots,
shown in Fig. 1b), is representative of the transition from
quasiperiodic dynamics to strange nonchaotic dynamics in- (b)
dicated in the fifth cell {=—0.0516). X4

To explain the main results, we refer to the bifurcation
diagram shown in Fig. 2. According to the qualitatively dif-
ferent dynamical behavior exhibited by systethys (2), and
(3), Fig. 2 can be divided into three regions. The white-color
region corresponds to two-frequency quasiperiodic oscilla-
tions with two or four bands, respectively. The hatched area ]
in the diagram indicates the set of parameter values for
which the system still exhibits negative Lyapunov expo-
nents, but the attractor becomes strange. To indicate the X
strangeness of the attractor in each cell we use the criteria 0
described in Ref{18]. Let us examine the appearance of an ,,1._‘.“[
n-band strange nonchaotic attracting set when the spatial co- et
ordinatej is changed. For some value #&f the transition i
from a four-band torus to a two-band SNA occtitse solid
curve in Fig. 2, being similar to merging crisis afi-band
torus[17,19 or tori coexisting in the phase spa@d]. Since
the spatial coordinate is discrete, it is impossible to indicate
the bifurcation of the band merging. Therefore, we can only
refer to the analogy between these phenomena in time-space.
The dashed curve in Fig. 2 illustrates the transition when the
loss of smoothness of a two-band torus leads to a two-band
fractal set. Notice that quasiperiodic forcing can not only
suppress chaos, as mentioned above, but also induce the de-FIG. 1. The view of the attractors of systertis, (2), and (3)

velopment of chaotic oscillations along the chain for larged K=1.55,2=0.5,G=0.13,6,=0.5(;5—1)] in the quasiperiodi-
values of the forcing amplitude. cally unforced casé& =0 [doubled invariant curvej&4) and cha-

otic attractor {=5)] (a), and when quasiperiodic forcing is applied
A=0.001[wrinkling of doubled invariant curvej&4) and strange
nonchaotic attractorj&5)] (b).

._._‘____'__,—-'—'_‘_"‘—‘—

B. Spatial dynamics

The dynamics in each cell differs from the one in theG and fixedA with the same initial conditions. The bifurca-
other cells, and becomes more complicated along the chaition diagram of spatiostable regimes is given in Fig. 3. Inside
From some value of the dynamics is qualitatively the same region 1 there exists a cycle with period 2 in all cells begin-
in each cell; let us call this regime “spatiostable.” Considerning with somej. In this case a quasiperiodic excitation
spatiostable regimes when the parameters are changed. \WWlamps along the chain, and has no effect on the oscillations
investigate a chain of 900 cells for different valueskoind  of cells whose dynamics in the autonomous case corresponds
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FIG. 3. Bifurcational diagram of spatiostable regimes in a qua-
fj siperiodic forced chain on a parameter plake@) (A=0.15, and
T2 3 4 5 6 7 8 the initial conditions are homogenegus
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FIG. 2. Bifurcation diagram for a chain of coupled circle maps
[K=1.55,0=0.5,G=0.1, andg,=0.5 (y5—1)]. 2T? is the two-
band invariant curve, B is the four-band invariant curve, and
2SNA is the two-band strange nonchaotic attractor.

C. Attractors on a three-dimensional torus

Starting from a knowledge of the destruction of a two-
dimensional toru$11,12, let us proceed to study the influ-
ence of the third frequency. For small nonlinearig/<(1),
the circle map is invertible, and has no chaotic trajectories. In
éhis case, the development of chaotic oscillations along the
chain is impossible. However, the destruction of quasiperi-
odic oscillations and the transition to a strange nonchaotic
8ttract0r seem to be typical phenomena, being observed

to a cycle with period 2. The cells oscillate “in phase,” and
the instant states along the chain at a fixed time look like
straight line[Fig. 4@@]. When the parameter nonlineariy

or the coupling parameteB is increased, the spatiostable
regime 1 is destroyed. An external signal propagates alon
the chain, influences the dynamics, and gives rise to quasip-

eriodic oscillations in each cell. Corresponding instant states T Lo "]
are shown in Fig. @). In region 3, one of two different 08 il 08 - ]
cycles with period 2 is realized in each cell along the chainX 0.6 1 < 06 .
[Fig. 4(c)]. It seems that the multistability phenomenon takes ™ ,, [ i 04 | |
place, and the bifurcation diagram in Fig. 3 has a multishee

structure. The regime of SNA appears via the destruction of 02t ] 021 ]

an invariant curvgFig. 4(d)] and becomes spatiostable in %0 ;=0 0000 800 1000 00 100 600 800 1000
regions 4 and §Fig. 3. i i

When the parameter of nonlinearity is increased, chaotic
oscillations appeafregion 6 in Fig. 3. For different values () ®)

of coupling chaotic oscillations have different properties in

space. Below the dashed curiidg. 3), every other cell adds o o R

a positive Lyapunov exponent into the spectrum of 08© 1 08 1
Lyapunov exponents of the system. Hence the hyperchaoy 06 ¢ 7 : = A
evolves along the chain. Figure 5 presents the results of cal o4 - 04 | i
culation of Kolmogorov entropyH;==!_;\;") for different 02 L 7 ] 0z | ]
values of couplings. It can be seen that, fa8<0.385, the 00 e oo L
Kolmogorov entropy grows in a linearly way along the 0 200 400 600 800 1000 0 200 400 600 800 1000
chain. But whileG is increased, every other cell does not add ) j

positive Lyapunov exponents, and a saturation of the entrop (© (d)

takes place. Therefore, for chaotic oscillations developea
from quasiperiodic ones, we obtained the same results as for FIG. 4. Stable states along the chain at fixed time for different
chaos of the Rssler type[3]. regions of the diagram in Fig. 3.
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FIG. 5. Kolmogorov entropy vs the number of cells, for differ-
entG values[K=2.0,Q2=0.5,A=0.15, anddy=0.5 (\5—1)].

within a wide range of cell parameters and coupling coeffi-
cient. Adding external forcing with frequenc§,=\2—1
(silver mean, and keeping the winding number in each cell
at 9=0.5(5—1) (golden mea)) we provide the regime of
three-frequency oscillations in terms of a continuous-time
dynamical system(in terms of a map, it has two zero
Lyapunov exponents, one of which is connected to the qua-
siperiodic forcing, and another one which is equal to
0.127x10%).

For some values of the forcing amplitude, synchronization
on T2 can take place, and the destruction of two-frequency
synchronous oscillations along the chain discussed above oc-
curs (Fig. 6). However, let us consider the evolution of the
three-frequency quasiperiodic oscillations. A set of standard
methods like phase portraits, power spectra, and Lyapunov
exponents are used to distinguish different kinds of dynamics
in systems exhibiting two-frequency quasiperiodic behavior.
However, these quantities cannot sufficiently characterize g 6. phase space plots corresponding to trajectories on a

three-frequency oscillatior{$ig. 7(a)], in particular when it -y ee frequency quasiperiodic attractor when synchronization takes
is necessary to decide whether a three-frequency quasipefirace (=0.8,(0=0.610 074,G=0.2, A=0.06, andfy=2—1).

odic motion is broken down or not. For this reason the di-por j=4 and 5, an invariant curve is presented, while fer6 a
mension of the limit set has been reduced using a Poincargrange nonchaotic attractor is observed.

section. We have to formulate a condition which specifies

the secant surfacéx— 0.5 <10 °. By means of this section

we are able to obtain phase portraits of the system inghe lated to the introduction of quasiperiodic forcing. One impor-

X; plane[Fig. 7(b)], which can be compared with the phase . . L .
i
portraits in Fig. 6. This yields an invariant curve in the casetant feature is that a strange nonchaotic behavior is a typical

of an ergodic motion o3, and reveals its loss of smooth- spatial regime. Along th_e chain, it can be observed Within a
ness and further destruction in the sixth cell. Thus the apWide range of both spatial and coupling parameters, while in
pearance of a strange nonchaotic attractoTdis related to & Single quasiperiodically driven map it is detected in a
the destruction of this invariant curve in the Poiricaeetion. ~ rather narrow region of the parameter space even if it exists
Thus, along the chain, the alternation of synchronous osciloVer the set of positive measures in it.

lations, three-frequency motion, and strange nonchaotic be- Moreover, itis possible to introduce detuning between the
havior can be distinguished. winding numbers to obtain multifrequency quasiperiodic re-

gimes and investigate the existence of attractors with a com-
plex structure on their surface and their breakdown.

However, we realize that such an approach applied to
maps on a torus has a limitation in the fact that the system
studied there is a discrete one and is highly abstract, and all

It has been shown that the quasiperiodically forced chairirajectories are on the torus by construction. Hence, a natural
of circle maps exhibits well-known phenomena investigatedypical dissipative dynamical system which allows higher-
before, namely, spatial period doublings, multistability, anddimensional phenomena to appear could be a challenge for
saturation of attractor dimension, as well as new effects refurther studies of the above-mentioned problems.

IV. CONCLUSIONS
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(b)

Xo

FIG. 7. Evolution of the phase portraits of a three-frequency invariant torus in sy&teni®), and(3) (K=0.8,Q2=0.610 074G=0.2,
A=0.058, andd,=2—1) (a), and Poincarenaps(b) for attractors(a).
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